
A Comparative Study of Network Representation
Learning for Link Prediction

Aanshi Patwari [1227546595] Himali Gajare [1228110730]

Shrey Malvi [1225539809] Kavil Parikh [1227933111]

Arizona State University
Group 10

Abstract

Link prediction is a critical issue in graph mining, and generating an effective1

network representation is integral to this task. In this study, we provide an overview2

of various network representation learning (NRL), also known as network em-3

bedding. We discuss the basic concepts and models of network embedding and4

predict the link prediction. We review major research works in each category5

and describe datasets and applications of network embedding, including its use in6

network mining tasks such as link prediction. Finally, we provide directions for7

future research to enhance further development.8

1 Introduction9

Networks are found in various domains, and link prediction is a crucial task in network analysis. This10

task involves predicting missing or future links within a network, and accurate link prediction can11

provide insights into the underlying structure and dynamics of a system. Network Representation12

Learning (NRL) has emerged as a powerful technique for link prediction by learning low-dimensional13

representations of nodes and edges in a network that capture their structural and semantic properties14

(5). However, there is still a lack of consensus on the most effective NRL methods for link prediction,15

and the performance of existing approaches varies significantly across different networks and tasks16

(14). A comparative study of NRL methods can help identify the most appropriate technique for a17

specific application and improve link prediction accuracy and efficiency.18

1.1 Motivation19

Link prediction has important implications in social network analysis, recommendation systems, and20

bioinformatics. For instance, social network analysis can use link prediction to identify potential21

friends or collaborators of a user based on their existing connections (16). In recommendation22

systems, link prediction can suggest new products or services to users based on their past behavior. In23

bioinformatics, link prediction can predict protein-protein interactions or gene-disease associations24

which can be valuable for drug discovery and understanding the mechanisms of various diseases25

(7). As the amount of data generated in these fields continues to grow, link prediction will become26

increasingly important in uncovering hidden relationships and patterns.27

1.2 Why is it Important?28

Network Representation Learning (NRL) has shown promising results in various applications, and29

its comparative study is essential to evaluate its strengths and weaknesses (2). By conducting a30

comparative study of NRL methods for link prediction, we can identify their capabilities, limitations,31

and factors that affect their performance. This can help researchers and practitioners develop more32

effective NRL methods and improve the accuracy and efficiency of link prediction in various domains.33

2 Project Description34

Our study aim is to analyze, assess, and compare various network representation learning algorithms35

on the CORA and SNAP-Facebook datasets. We are examining various algorithms, including Random36

Walk-based techniques like DeepWalk, Node2vec, and Attri2vec, and Neural Network-based methods37

such as Graph Convolution Network (GCN), Graph Attention Network (GAT) and, GraphSAGE.38

3 Contributions39

Aanshi Patwari [1227546595] focused on implementing and evaluating Node2vec model. She40

analyzed how the hyperparameters of Node2vec like P,Q and dimensions affects the performance.41

She also evaluated the model on CORA and SNAP-Facebook datasets and analyzed the results.42

Himali Gajare [1228110730] focused on implementing and evaluating Graph Convolution Network43

(GCN) and Graph Attention Network (GAT) models. She analyzed how GCN uses spectral graph44

convolutions to generate node embeddings and GAT uses attention mechanism to aggregate neigh-45

borhood information. She evaluated the performance of GCN and GAT models on CORA and46

SNAP-Facebook datasets with different hyperparameters.47

Shrey Malvi [1225539809] focused on implementing and evaluating Random Walk-based approaches,48

such as DeepWalk and Attri2vec. He analyzed how these models generate node embeddings by49

simulating random walks on the graph. He evaluated the performance of DeepWalk and Attri2vec on50

CORA and SNAP-Facebook datasets with different hyperparameters like walk length, number of51

walks, and dimensions.52

Kavil Parikh [1227933111] focused on implementing and evaluating Neural Network-based ap-53

proaches, such as GraphSAGE. He analyzed how GraphSAGE generates node embeddings by54

aggregating neighborhood information using a hierarchical sampling strategy. He evaluated the55

performance of GraphSAGE on CORA and SNAP-Facebook datasets with different hyperparameters.56

4 Literature Review57

In recent years, NRL has gained popularity due to its ability to learn high-quality node embeddings58

in a network that captures the structural and semantic properties of the network. In the existing59

literature, a variety of techniques have been proposed for link prediction in network theory, with many60

emerging in recent years. We focus on network representation learning techniques for link prediction,61

specifically comparing Random walk-based techniques and Neural network-based techniques.62

Random walk-based techniques such as DeepWalk, node2vec, and attri2vec have been proposed63

to learn node embeddings. DeepWalk(11) proposed by Perozzi et al. (2014) learns node repre-64

sentations by performing random walks on the graph and then using a skip-gram model to learn65

a low-dimensional representation of each node. node2vec(3) proposed by Grover and Leskovec66

(2016) is an extension of DeepWalk that allows for more control over the properties of the random67

walks. Attributed Network Embedding via Subspace Discovery(15), or attri2vec proposed by Daokun68

Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang(2019) is an extension of node2vec that takes69

into account the node attributes when learning node representations. However, these techniques70

have limitations in handling large-scale graphs, incorporating rich node attributes, and capturing71

long-range dependencies in the network beyond local neighborhoods.72

Neural network-based techniques, such as Graph Convolutional Networks (GCNs), SDNE (Structural73

Deep Network Embedding), and GraphSAGE, have been shown to be advantageous for network74

representation learning. These techniques can handle large graphs with rich node attributes and can75

capture structural patterns beyond local neighborhoods. SDNE(13) proposed by Wang et al. (2016)76

is a deep autoencoder-based approach that learns embeddings by preserving both first-order and77

second-order proximity in the network , which has been shown to achieve state-of-the-art performance78

on various graph-based tasks such as node clustering, link prediction, and visualization. GCNs(8),79

proposed by Kipf and Welling (2016), apply a convolution operation to node features to compute a80

2

dot product of the kernel and the signal at each point in the signal which enables GCNs to capture rich81

information and dependencies present in the input graph while still being computationally efficient.82

GraphSAGE(4), proposed by Hamilton et al. (2017), aggregates node features of a node’s neighbors,83

allowing it to learn and generalize well to new nodes and graphs. This technique is particularly useful84

when working with graphs that have varying structures. Graph Attention Networks (GATs)(12),85

proposed by Veličković et al. (2018), utilizes an anisotropic operation during recursive neighborhood86

diffusion to improve the learning capacity of the model. This is achieved through an attention mech-87

anism which assigns varying degrees of importance to the contributions of each neighbor, thereby88

exploiting the anisotropy paradigm.89

5 Dataset90

5.1 CORA91

The CORA dataset is a well-known benchmark dataset for citation network analysis or citation92

recommendation. It has 5,429 citation links between 2,708 papers that are divided into seven sections93

based on the research area. A directed acyclic network is formed by the connections between papers,94

and each article is represented as a bag-of-words feature vector. The feature vector length is 1433.95

Citation recommendation seeks to foretell which papers, depending on the content and citation96

network of a particular paper, should be mentioned. The CORA dataset possesses a total of 248597

distinct papers as nodes, and 5209 citation links connecting them. We divided the dataset into three98

sets for evaluation: a training set comprising 702 examples, a validation set containing 234 examples,99

and a test set consisting of 1040 examples.100

5.2 SNAP ego-Facebook101

The SNAP ego-Facebook dataset is a subset of the larger SNAP Facebook dataset, which contains102

a collection of anonymized Facebook social network data of 10 ego-networks. An ego-network is103

a social network consisting of an individual (referred to as an "ego") and their immediate social104

contacts (referred to as "alters"). Each ego-network(10) in the dataset contains the profiles of the ego105

and their alters, along with information on their friendship relationships and other attributes such as106

gender and age. Here, we have considered 1 ego-network namely ego 0. The feature vector length is107

224. The SNAP ego-network of ego 0 dataset includes 347 nodes and 5038 links. We divided the108

dataset into three sets for evaluation: a training set with 1209 examples, a validation set with 403109

examples, and a test set with 2014 examples.110

Figure 1: Visualization of CORA graph.
Each different node color represents the sub-
ject of the paper

Figure 2: Visualization of 0th
circle of ego-facebook undirected
network. Diameter of nodes is
based on the degree of it

6 Approach111

6.1 Algorithm Study112

"Embedding" is the process of mapping network nodes to a low-dimensional space to reveal informa-113

tion about their similarity and network structure. In embedding-based network representation, there114

3

are two main types of embeddings: node-based and edge-based. In node-based embedding, we use115

vectors to represent the nodes of a network. Random walk defines node similarity in a flexible and116

stochastic way, incorporating local and higher-order neighborhood information, and doesn’t require117

considering all node pairs during training (1). We will be mapping node u and v to low-dimensional118

vectors zu and zv. Specifically, we can define nearby nodes NR(u) as the neighborhood of node u119

obtained by some strategy R. We could run short fixed length random walks starting from each node120

on the graph using some strategy R to collect NR(u), which is the multiset of nodes visited on random121

walks starting from u (1). To optimize embeddings to maximize the likelihood of random walk122

co-occurrences, we compute loss function as:123

L =
∑
u∈V

∑
v∈NR(u)

−log

(
exp(zTu zv)

exp(
∑

n∈V zTu zn)

)
(1)

Our implementation of node-based embedding includes Deepwalk, Node2vec, and Attri2vec.124

6.1.1 DeepWalk125

DeepWalk uses random paths in graphs to reveal network patterns, which are then learned and126

encoded by neural networks (Word2Vec model) to generate embeddings. Paths are generated by127

randomly selecting neighbors of the current node and continuing through the walk until the desired128

number of steps is reached (11). The idea behind DeepWalk is to treat each random walk as a129

sentence and each node in the walk as a word, and then apply a skip-gram model from natural130

language processing to learn node embeddings. The skip-gram model predicts the probability of131

observing a context node given a target node, and uses stochastic gradient descent to minimize the132

negative log-likelihood of the observed context nodes.133

The objective function for the skip-gram model used in DeepWalk is given by:134

J(θ) = − 1

T

T∑
t=1

∑
c∈Ct

log p(c|vt, θ) (2)

For our evaluation, we have implemented the sampling strategy in DeepWalk algorithm, where we135

took the node2vec algorithm as a baseline with the tuning parameter P (return parameter) and Q136

(in-out parameter) equal to 1 (3).137

6.1.2 Node2vec138

Node2vec algorithm generates node embeddings using second-order biased random walks, where139

transition probabilities depend on the present and previous nodes. It is based on the idea of generating140

random walks on the graph and using these walks to learn node embeddings. The first step of the141

algorithm involves generating a large number of random walks on the graph. For each random walk,142

the algorithm assigns a probability distribution over the next node to visit based on the current node143

and the previous node. This probability distribution is determined by tuning parameters called the144

"return parameter" and the "in-out parameter", which control how likely the random walk is to revisit145

nodes already visited and how likely it is to explore new nodes, respectively. Once the random walks146

are generated, the context pairs are obtained and used to train a word2vec model to generate node147

embeddings. The objective function for the skip-gram model used in Node2vec is identical to the one148

used in DeepWalk, but with a different set of context nodes. (3).149

6.1.3 Attri2vec150

Attri2vec takes into account the node attributes when learning node embeddings, while DeepWalk151

does not. It does this by first generating a set of random walks on the graph. These random walks are152

then used to train a continuous bag-of-words model, which learns a representation of each node as a153

vector of word counts. The word counts in this vector represent the frequency with which the node154

appears in the context of other nodes. The final node embeddings are then obtained by dimensionality155

reduction on the learned word vectors. The joint objective function used in Attri2vec is given by:156

4

J(θ) = −
N∑
i=1

log p(vi, ai|N (vi), θ) (3)

where θ represents the parameters of the model, vi represents the i-th node in the network, ai157

represents the attributes of node vi, N (vi) represents the neighbors of node vi, and p(vi, ai|N (vi), θ)158

represents the joint probability of observing node vi and its attributes ai given its neighbors and159

model parameters θ.160

6.1.4 Graph Convolutional Networks(GCN)161

The key idea behind GCNs is to learn representations of nodes that capture both local and global162

information. In GCN, first, the node features are initialized for each node in the graph. Then it163

performs a convolution operation on the node features, where each node aggregates information from164

its neighbors. This operation is similar to a traditional convolutional neural network (CNN), but165

instead of a fixed filter, the filter is learned based on the graph structure and lastly, ReLU activation166

and pooling layers are applied. The above steps are repeated for multiple layers to learn higher-level167

features. Finally, the output of the last layer is used to perform the link prediction. The following is168

the mathematical equation for a graph convolutional layer:169

H(l+1) = σ(D−1/2AD−1/2W(l)H(l)) (4)

In this equation, H(l) is the hidden representation of the nodes in the lth layer, W(l) is the weight170

matrix of the lth layer, A is the adjacency matrix of the graph, and σ is a non-linear activation171

function.172

6.1.5 GraphSAGE173

While GCN aggregates information by computing a weighted average of features from neighboring174

nodes, GraphSage uses a more general framework of sampling and aggregation. Specifically, Graph-175

Sage samples a fixed-size set of neighbors for each node and then aggregates their features using a176

neural network that is learned during training. The GraphSAGE algorithm can be defined as follows:177

h
(l)
N (v) = AGGREGATE(l)

(
h(l−1)
u : u ∈ N (v)

)
(5)

h(l)
v = σ

(
W (l) · CONCAT

(
h(l−1)
v , h

(l)
N (v)

))
(6)

where h
(l)
v is the embedding of node v at layer l, N (v) is the set of neighbors of node v,178

AGGREGATE(l) is the aggregation function used at layer l, CONCAT is the concatenation op-179

eration, W (l) is the weight matrix of layer l, h(l−1)
u is the embedding of node u at layer l − 1, and σ180

is the activation function.181

6.1.6 Graph Attention Networks (GAT)182

GAT uses attention mechanisms to weight the contribution of neighboring nodes during the con-183

volution operation unlike GCN which uses a fixed-weight parameter matrix. This allows GAT to184

selectively focus on the most relevant nodes during the aggregation step, which can improve perfor-185

mance in tasks where some nodes are more important than others. The following equations describe186

the GAT architecture:187

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij W

(l)h
(l)
j

 (7)

where h
(l)
i is the representation of node i at layer l, N (i) is the set of neighbors of node i, α(l)

ij is188

the attention weight between nodes i and j at layer l, W(l) is the weight matrix at layer l, and σ is a189

non-linear activation function.190

5

The attention weights are computed using the following equation:191

α
(l)
ij =

exp
(
a
(l)
i · a(l)j

)
∑

k∈N (i) exp
(
a
(l)
i · a(l)k

) (8)

where a
(l)
i is the attention vector for node i at layer l. The attention vector is computed using the192

following equation:193

a
(l)
i = W(a)h

(l)
i (9)

6.2 Parameter Settings194

Deepwalk, Node2vec and Attri2vec employ a strategy of capturing the similarity of context nodes195

in random walks. On the other hand, GAT, GraphSAGE and GCN employ unsupervised learning196

to make nodes that co-occur in short random walks represented closely in the embedding space.197

For all six algorithms, node embeddings were learned via an unsupervised learning procedure that198

generated short random walks from the graph and trained node embeddings on batches of target and199

context pairs. The dimensionality of the embeddings was set to 128 for all algorithms, while the other200

parameters varied. Specifically, Node2vec was trained with 20 walks from each node, while Attri2vec,201

GraphSAGE, GAT and GCN were trained with 4, 1, 1, and 1 walks from each node, respectively. The202

batch size was fixed at 50 for all algorithms, while the number of epochs was set to 6.203

6.3 Implementation Details204

Figure 3: End-to-end block diagram of our methodology for link prediction

Link prediction task involves prediction of missing edges in the graph. Our Input data comprises of205

Node features and Adjacency matrix. First, we use representation learning algorithms to compute206

the node embeddings using unsupervised setting. Then, we apply binary operator to generate edge207

embedding based on two node embeddings. Lastly, these edge representations are used as an input208

and output with 0/1 label (0 for negative link, 1 for positive link) in logistic regression for the link209

prediction.210

One important detail in link prediction task is the splitting of graph into train/val/test set to avoid211

data leakage while evaluating the model. The Train Graph was used to compute node embeddings,212

while the train set was composed of positive and negative edges that were not used in computing node213

embeddings. The validation set included edges that were not used in computing node embeddings or214

training the classifier and was used to determine the best classifier. Finally, the Test Graph and test215

set were used to evaluate the performance of the final model.216

7 Results217

We have evaluated the performance of the link prediction using the AUC metric for all the algorithms218

on the validation set. Table 1 shows the quantitative analysis of embedding algorithms for CORA and219

ego-Facebook dataset classified based on operators. In this evaluation, we used four binary embed-220

dings namely Hadamard, Weighted L1, Weighted L2, and Average to compute edge embeddings from221

the combination of node embeddings of dimension 128. Hadamard combines node embeddings using222

dot product, whereas Weighted L1 and L2 compute absolute and euclidean distance and Average223

6

simply takes the average of both. We chose the best-performing binary operator (highlighted in224

the table) from this evaluation for each of the algorithm and dataset combinations and then finally225

evaluated our model on the test set. We used the same classification model (logistic regression) with226

the default setting for the link prediction task to conduct a fair evaluation of embedding algorithms.227

A comparison of these algorithms on the test set has been shown in Table 2.228

Operators Datasets DeepWalk Node2vec Attri2vec GCN GAT GraphSAGE
Hadamard Cora 0.759 0.779 0.897 0.872 0.901 0.922

Facebook 0.678 0.731 0.743 0.945 0.907 0.904
Weighted-L1 Cora 0.806 0.850 0.942 0.822 0.851 0.924

Facebook 0.779 0.832 0.760 0.920 0.942 0.899
Weighted-L2 Cora 0.823 0.872 0.950 0.771 0.848 0.926

Facebook 0.810 0.855 0.734 0.906 0.946 0.901
Average Cora 0.612 0.545 0.516 0.559 0.511 0.563

Facebook 0.723 0.706 0.684 0.852 0.820 0.778
Table 1: Comparison of representation learning algorithms classified based on binary operators using Area
Under the Curve (AUC) metric

As shown in Table 2, Attri2vec generated the best result for CORA dataset and GAT outperformed all229

other algorithms for ego-Facebook dataset. From this quantitative analysis, we can imply that neural230

network-based embedding algorithms are performing better than random walk-based methods for231

the ego-Facebook dataset (typically a larger dataset) because aggregation parameters in graph-based232

methods are learned to have similar representations for pairs of nodes that occur in short random233

walks. As smaller datasets generally have more homogeneous structures i.e. nodes have similar234

attributes and behave in a similar manner, Attri2vec performed better for CORA because it is relatively235

easier for Attri2vec to learn meaningful representations that capture the similarities and differences236

between the nodes.237

Algorithms Cora Facebook
Deepwalk 0.8493010355 0.8505506144
Node2vec 0.8317159763 0.8495920809
Attri2vec 0.9434948225 0.759442098
GCN 0.8989534024 0.9340411558
GAT 0.8776941568 0.93667663
GraphSAGE 0.9241383136 0.8923986908

Table 2: Comparision of embedding algorithms on test set for CORA and ego-Facebook dataset using the best
performing binary operators

Figure 4: Predicted test edges for CORA
dataset using Attri2vec algorithm

Figure 5: Predicted test edges for ego-
Facebook dataset using GAT algorithm

7

Figure 6: Edge embeddings representation in 2D space of Deepwalk, Node2vec, Attri2vec, GCN, GraphSAGE
and GAT (left to right, top to bottom) for CORA dataset. Red and blue represent predicted positive and negative
links respectively.

Figure 7: Edge embeddings representation in 2D space of Deepwalk, Node2vec, Attri2vec, GCN, GraphSAGE
and GAT (left to right, top to bottom) for ego-Facebook dataset. Red and blue represent predicted positive and
negative links respectively.

The edge embeddings were generated with 128 dimensions, which were then projected to 2 dimensions238

using the Principal Components Analysis (PCA) algorithm for visualization purposes which are239

shown in the figures 6 and 7. Figures 4 and 5 represents the qualitative analysis of the best-performing240

embedding algorithms on the CORA and ego-facebook dataset. The test examples consist of all241

nodes, with green edges representing correct predictions made by our model. Meanwhile, false242

negatives and false positives are depicted by the blue and red edges, respectively.243

8 Conclusion244

Within this research, we provided a comparative analysis of diverse network representation learning245

algorithms for the purpose of link prediction. We conducted experiments on two esteemed datasets,246

namely CORA and SNAP-Facebook, and we evaluated a plethora of Random Walk-based and247

8

Neural Network-based approaches. Our findings indicate that Random Walk-based methods, for248

instance, DeepWalk and Node2vec, exhibit exceptional performance on networks that are sparse and249

homogeneous. Whereas, Neural Network-based approaches, such as GCN, GAT, and GraphSAGE,250

present superior outcomes on networks that are dense and heterogeneous. In light of our analysis,251

we drew the conclusion that each algorithm possesses its distinct advantages and limitations, and252

the selection of an algorithm is dependent on the characteristics of the dataset and the anticipated253

performance metrics.254

9 Future Work255

Our research provides several suggestions for future investigations in network representation learning256

(6). Firstly, we propose a deeper exploration of the interpretability of the learned representations and257

their utility in revealing the network’s underlying structure (5). Secondly, we suggest considering the258

adoption of alternative graph embedding methods to enhance the accuracy of link prediction such259

as Variational Graph Autoencoder (9) which has demonstrated state-of-the-art results. Lastly, we260

recommend exploring the application of transfer learning approaches to leverage pre-trained models261

on comparable datasets for improved link prediction performance on new datasets.262

A Appendix263

Random Walk Model264

In the Random Walk model, we generate a set of random walks on the graph and use these walks to265

learn the node embeddings. Let G = (V,E) be a graph with |V | = n nodes and |E| = m edges. We266

define Pu,v as the probability of moving from node u to node v in one step, where u, v ∈ V . The267

probability distribution P is defined as follows:268

Pu,v =

{
1

deg(u) if (u, v) ∈ E 0

otherwise
(10)

where deg(u) represents the degree of node u i.e. the number of edges incident on node u.269

We generate k random walks of length l starting from each node in the graph. Let wi,j denote the270

jth node in the ith random walk. The probability of generating a random walk w = (w1, w2, ..., wl)271

starting from node u is given by:272

Pr(w|u) =
l−1∏
i=1

Pwi,wi+1 (11)

The objective of the Random Walk model is to maximize the log-likelihood of observing the set of273

generated random walks:274

max
Θ

∑
u∈V

∑
w∈Wu

logPr(w|u,Θ) (12)

where Θ represents the model parameters and Wu represents the set of all random walks starting275

from node u.276

Skip Gram Model277

In the Skip Gram model, we aim to learn the embeddings of a node by predicting its context nodes in278

a fixed size window. Let G = (V,E) be a graph with |V | = n nodes and |E| = m edges. We define279

du as the embedding of node u and Cu as the set of context nodes of node u.280

Given a node u, we define the probability of observing a context node v given u as follows:281

9

P (v|u) = exp(du · dv)∑
w∈V exp(du · dw)

(13)

where · represents the dot product of two embeddings.282

We use the Skip Gram model to maximize the log-likelihood of observing the set of context nodes for283

each node in the graph:284

max
Θ

∑
u∈V

∑
v∈Cu

logP (v|u,Θ) (14)

where Θ represents the model parameters.285

10

References286

[1] Goldberg, Y., Levy, O.: word2vec explained: deriving mikolov et al.’s negative-sampling287

word-embedding method. arXiv preprint arXiv:1402.3722 (2014)288

[2] Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A survey.289

Knowledge-Based Systems 151, 78–94 (2018)290

[3] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of291

the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. pp.292

855–864 (2016)293

[4] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Ad-294

vances in neural information processing systems 30 (2017)295

[5] Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Methods and296

applications. arXiv preprint arXiv:1709.05584 (2017)297

[6] Hinkel, C., Kühne, T., Kramer, S., Schüller, T., Schuhmann, F.: A comparative study of network298

representation learning for link prediction. arXiv preprint arXiv:2006.02525 (2020)299

[7] Hopkins, A.L.: Network pharmacology: the next paradigm in drug discovery. Nature chemical300

biology 4(11), 682–690 (2008)301

[8] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.302

arXiv preprint arXiv:1609.02907 (2016)303

[9] Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308304

(2016)305

[10] Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. Advances in306

neural information processing systems 25 (2012)307

[11] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In:308

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and309

data mining. pp. 701–710 (2014)310

[12] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention311

networks. arXiv preprint arXiv:1710.10903 (2017)312

[13] Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the313

22nd ACM SIGKDD international conference on Knowledge discovery and data mining. pp.314

1225–1234 (2016)315

[14] Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: A survey. IEEE316

transactions on Big Data 6(1), 3–28 (2018)317

[15] Zhang, D., Yin, J., Zhu, X., Zhang, C.: Attributed network embedding via subspace discovery.318

Data Mining and Knowledge Discovery 33, 1953–1980 (2019)319

[16] Zhang, M., Chen, Y.: Link prediction based on graph neural networks. Advances in neural320

information processing systems 31 (2018)321

11

	Introduction
	Motivation
	Why is it Important?

	Project Description
	Contributions
	Literature Review
	Dataset
	CORA
	SNAP ego-Facebook

	Approach
	Algorithm Study
	DeepWalk
	Node2vec
	Attri2vec
	Graph Convolutional Networks(GCN)
	GraphSAGE
	Graph Attention Networks (GAT)

	Parameter Settings
	Implementation Details

	Results
	Conclusion
	Future Work
	Appendix

